matematicas visuales home | visual math home

Empezamos con un conjunto de n+1 puntos en el plano (que tengan diferentes coordenadas x):

(x0, y0), (x1, y1), (x2, y2),....,(xn, yn).

Nuestro objetivo es encontrar una función polinómica que pase por esos n+1 puntos y que tengan el menor grado posible. Un polinomio que pase por varios puntos determinados se llama un polinomio de interpolación.

Vamos a ver una forma de la solución que es el llamado polinomio de interpolación de Lagrange. (Lagrange publicó su fórmula en 1795 pero ya había sido publicada en 1779 por Waring y redescubierta por Euler en 1783).

La fórmula general para el polinomio de interpolación de Lagrange es

Polinomios de interpolación de Lagrange: fórmula general | matematicasVisuales

Donde usamos polinomios básicos de Lagrange:

Polinomios de interpolación de Lagrange: polinomios básicos de Lagrange  | matematicasVisuales

Expandiendo el producto para verlo mejor:

Polinomios de interpolación de Lagrange: formula, expandiendo el producto de los polinomios básicos de Lagrange | matematicasVisuales

Estos polinomios básicos de Lagrange se construyen con una propiedad:

Polinomios de interpolación de Lagrange: propiedad de los polinomios básicos de Lagrange | matematicasVisuales

Entonces es muy fácil comprobar que estos polinomios pasan por todos los n+1 puntos dados (es decir, es un polinomio de interpolación):

El grado del polinomio de interpolación de Lagrange es igual o menor que n. Es el menor grado posible. El polinomio encontrado es único. Hay otras maneras de calcular este polinomio (con sus ventajas e inconvenientes). La forma de Lagrange es sencilla y se comprueba con facilidad que es un polinomio de interpolación y su grado. Pero para conocer los coeficientes del polinomio hay que simplificar los términos. Otra característica de esta forma de encontrar el polinomio es que si añadimos o quitamos puntos hay que recalcularlo otra vez.

Vamos a ver algunos ejemplos. El más sencillo es una recta. Dados dos puntos (x0, y0) y (x1, y1) hay exactamente una recta que pasa por esos dos puntos:

Polinomios de interpolación de Lagrange: formula para una línea recta | matematicasVisuales
Polinomios de interpolación de Lagrange: Una recta que pasa por dos puntos | matematicasVisuales

Dados tres puntos (x0, y0), (x1, y1) y (x2, y2), con coordenadas x diferentes, o bien los tres puntos están en una recta o hay un polinomio de segundo grado (una parábola) que pasa por esos tres puntos. En cualquier caso, hay un polinomio de grado como mucho 2 que pasa por esos tres puntos.

Polinomios de interpolación de Lagrange: formula de una parábola | matematicasVisuales
Polinomios de interpolación de Lagrange: Una parábola que pasa por tres puntos | matematicasVisuales

Si tenemos 4 puntos, podemos encontrar un polinomio de grado 3 (o quizás una parábola o una línea recta en algunos casos) que pasa por esos 4 puntos:

Polinomios de interpolación de Lagrange: Un polinomio de grado 3 que pasa por 4 puntos | matematicasVisuales

Un función polinómica de grado 4 pasa a través de 5 puntos:

Polinomios de interpolación de Lagrange: Un polinomio de grado 4 que pasa por 5 puntos | matematicasVisuales

Usaremos los polinomios de interpolación de Lagrange para construir aplicaciones interactivas relacionadas con funciones polinómicas, sus derivadas e integrales.

Las funciones polinómicas con coeficientes reales o complejos de grado n tienen siempre n raíces (reales o complejas)(Teorema fundamental del Álgebra):

Funciones polinómicas complejas: las funciones polinómicas tienen n raíces (n es el grado del polinomio) | matematicasVisuales

MÁS ENLACES

Funciones polinómicas (1): funciones afines
Dos puntos determinan una línea recta. Como función son las funciones afines. Estudiaremos la pendiente de la recta y como podemos obtener la ecuación de la recta que pasa por dos puntos. Estudiaremos el corte con el eje de abcisas.
Potencias con exponentes naturales (y exponentes racionales positivos)
Potencias con exponente natural son funciones importantes pues son la base de los polinomios. Sus funciones inversas son las raíces que son funciones potencia con exponente racional positivo.
Funciones polinómicas (2): funciones cuadráticas
Las funciones cuadráticas son polinomios de grado 2. Sus gráficas son parábolas. Para encontrar los puntos de corte con el eje de abcisas tenemos que resolver una ecuación. El vértice de la parábola es un máximo o mínimo de la función.
Funciones polinómicas y derivada (2): Funciones cuadráticas
La derivada de una función cuadrática es una función afín, es decir, es una línea recta.
Funciones polinómicas y derivada (3): Funciones cúbicas
La derivada de una función cúbica es una función cuadráticas, es decir, una parábola
Funciones polinómicas y derivada (4): Polinomios de Lagrange (funciones polinómicas en general)
Los polinomios de Lagrange son polinomios que pasan por n puntos dados. Usamos los polinomios de Lagrange para explorar funciones polinómicas más generales y sus derivadas.
Funciones polinómicas y derivada (5): Antiderivadas
Si la derivada de F(x) es f(x) decimos que F es una antiderivada de f. También decimos que F es una primitiva o una integral indefinida de f.
Integral definida
La integral formaliza el concepto intuitivo de área. Para su definición aproximamos el área usando rectángulos.
Las funciones monótonas son integrables
Las funciones monótonas definidas en intervalos cerrados son interables. En estos casos podemos acotar el error que cometemos al aproximar la integral usando rectángulos.
Integral indefinida
Si consideramos el límite inferior de integración fijado y podemos calcular la integral definida para diferentes valores del límite superior de integración entonces podemos definir una nueva función: una integral indefinida de f.
Funciones polinómicas e integral (1): Funciones afines
Es fácil calcular el área bajo una línea recta y el eje de abcisas. Es un primer ejemplo de integración que nos permite entender la idea e introducir algunos conceptos básicos: integral como área, límites de integración, áreas positivas y negativas.
Funciones polinómicas e integral (2): Funciones cuadráticas
Calcular el área bajo una parábola es mucho más difícil que calcular áreas bajo una recta. Aquí mostramos como aproximar el área usando rectángulos y que una función integral de un polinomio de grado 2 es un polinomio de grado 3.
Funciones polinómicas e integral (3): polinomios de Lagrange (funciones polinómicas en general)
Estudiamos algunos conceptos básicos sobre integración aplicados a funciones polinómicas de cualquier grado. Las funciones integrales de funciones polinómicas son polinomios de un grado más que la función original.
El Teorema Fundamental del Cálculo (1)
El Teorema Fundamental del Cálculo afirma que toda función continua tiene una antiderivada y nos muestra cómo construir una usando la integral.
El Teorema Fundamental del Cálculo (2)
El Segundo Teorema Fundamental del Cálculo nos proporciona una herramienta muy potente para calcular integrales definidas (si conocemos una primitiva o antiderivada de la función).
Polinomios de Taylor (1): función exponencial
Al aumentar el grado del polinomio de Taylor se aproxima a la función exponencial en un intervalo más y más amplio.
Polinomios de Taylor (2): función seno
Al aumentar el grado del polinomio de Taylor se aproxima a la función seno en un intervalo más y más amplio.
Polinomios de Taylor (3): raíz cuadrada
La función no está definida para valores menores que -1. Los polinomios de Taylor en torno al origen aproximan la función entre -1 y 1.
Polinomios de Taylor (4): función racional 1
La función tiene una singularidad en -1. Los polinomios de Taylor en torno al origen aproximan la función entre -1 y 1.
Polinomios de Taylor (5): función racional 2
La función tiene una singularidad en -1. Los polinomios de Taylor en torno al origen aproximan la función entre -1 y 1.
Polinomios de Taylor (6): función racional con 2 singularidades
La función tiene dos singularidades reales, en -1 y en 1. Los polinomios de Taylor aproximan la función entre en un intervalo simétrico respecto al centro del desarrollo. Su radio es la distancia a la singulardidad más próxima.
Polinomios de Taylor (7): función racional sin singularidades reales
La función es continua y no tiene singularidades reales. Sin embargo, los polinomios de Taylor sólo aproximan la función en un intervalo. Entenderemos un poco mejor este comportamiento estudiando una función compleja.
Funciones polinómicas complejas (1): Potencias de exponente natural
Las potencias de exponente natural tienen un cero de multiplicidad n.
Funciones polinómicas complejas (2): Polinomio de grado 2
Un polinomio de grado 2 tiene dos raíces o ceros. En esta representación podemos ver los óvalos de Cassini y la lemniscata.
Funciones polinómicas complejas (3): Polinomio de grado 3
Un polinomio de grado 3 tiene tres ceros o raíces. Podemos modificar los tres ceros de este tipo de polinomios.
Funciones polinómicas complejas (4): Polinomio de grado n
Un polinomio de grado n tiene n ceros o raíces.