matematicas visuales home | visual math home

Esta es la segunda versión interactiva del dibujo del rombicuboctaedro aumentado que hizo Leonardo da Vinci para el libro 'La divina proporción' de Luca Pacioli.

Leonardo da Vinci: Dibujo del rombicuboctaedro aumentado para La Divina Proporción de Luca Pacioli
Leonardo da Vinci realizó varios dibujos de poliedros para La Divina Proporción de Luca Pacioli. Aquí podemos ver una adaptación de su rombicuboctaedro aumentado.

En esta versión podemos separar las pirámides y ver el interior de este poliedro. Luca Pacioli escribió que 'solo podemos ver el interior usando nuestra imaginación'. La aplicación interactiva solo nos ayuda un poco.

Separando las pirámides vemos el interior que es un rombicuboctaedro.

Leonardo da Vinci: Dibujo del rombicuboctaedro para La Divina Proporción de Luca Pacioli
Leonardo da Vinci realizó varios dibujos de poliedros para La Divina Proporción de Luca Pacioli. Aquí podemos ver una adaptación de su rombicuboctaedro.
Leonardo da Vinci: Rombicuboctaedro aumentado | matematicasVisuales
Leonardo da Vinci: Rombicuboctaedro aumentado | matematicasVisuales
Leonardo da Vinci: Rombicuboctaedro aumentado | matematicasVisuales
Leonardo da Vinci: Rombicuboctaedro aumentado | matematicasVisuales
Leonardo da Vinci: Rombicuboctaedro aumentado | matematicasvisuales
Leonardo da Vinci: Rombicuboctaedro aumentado | matematicasVisuales

Si queremos jugar con el rombicuboctaedro aumentado con pirámides de diferentes tamaños podemos pulsar el siguente enlace:

Rombicuboctaedro aumentado
A partir de un rombicuboctaedro podemos añadir pirámides a sus caras. Obtenemos un precioso poliedro que parece una estrella.
Augmented Rombicuboctahedron | matematicasVisuales

REFERENCIAS

Luca Pacioli - La divina proporción - Ediciones Akal, 4th edition, 2004. Spanish edition of 'De divina proportione'. Translation by Juan Calatrava.
Sitio web de Rinus Roelofs. Este escultor y matemático holandés nos muestra su trabajo y muchas ideas preciosas y recursos. Por ejemplo, su artículo A Mistake in a drawing by Leonardo da Vinci.
W.W.W. Rouse Ball and H.S.M. Coxeter, 'Mathematical Recreatins & Essays', The Macmillan Company, New York, 1947.
Peter R. Cromwell - 'Polyhedra', Cambridge University Press, 1999. (pp. 89 and 366-369)

MÁS ENLACES

Leonardo da Vinci: Dibujo del rombicuboctaedro para La Divina Proporción de Luca Pacioli
Leonardo da Vinci realizó varios dibujos de poliedros para La Divina Proporción de Luca Pacioli. Aquí podemos ver una adaptación de su rombicuboctaedro.
Pseudo rombicuboctaedro
También llamado girobicúpula cuadrada elongada. Es muy parecido al rombicuboctaedro pero es menos simétrico.
Dodecaedro rómbico (3): cubo con pirámides
Añadiendo seis pirámides a un cubo podemos construir nuevos poliedros que tienen veinticuatro caras triángulares. Para unas determinadas pirámides obtenemos un dodecaedro rómbico que tiene doce caras rómbicas.
Leonardo da Vinci: Dibujo del dodecaedro para La Divina Proporción de Luca Pacioli
Leonardo da Vinci realizó varios dibujos de poliedros para La Divina Proporción de Luca Pacioli. Aquí podemos ver una adaptación de su dodecaedro.
Leonardo da Vinci: Dibujo del octaedro truncado para La Divina Proporción de Luca Pacioli
Leonardo da Vinci realizó varios dibujos de poliedros para La Divina Proporción de Luca Pacioli. Aquí podemos ver una adaptación de su octaedro truncado.
Leonardo da Vinci: Dibujo del cuboctaedro para La Divina Proporción de Luca Pacioli
Leonardo da Vinci realizó varios dibujos de poliedros para La Divina Proporción de Luca Pacioli. Aquí podemos ver una adaptación de su cuboctaedro.
Leonardo da Vinci: Dibujo del octaedro estrellado (Stella Octangula)  para La Divina Proporción de Luca Pacioli
Leonardo da Vinci realizó varios dibujos de poliedros para La Divina Proporción de Luca Pacioli. Aquí podemos ver una adaptación de su octaedro estrellado (que Kepler llamó stella octangula).
Leonardo da Vinci: Dibujo del octaedro para La Divina Proporción de Luca Pacioli
Leonardo da Vinci realizó varios dibujos de poliedros para La Divina Proporción de Luca Pacioli. Aquí podemos ver una adaptación de su octaedro.
Leonardo da Vinci: Dibujo del tetraedro truncado para La Divina Proporción de Luca Pacioli
Leonardo da Vinci realizó varios dibujos de poliedros para La Divina Proporción de Luca Pacioli. Aquí podemos ver una adaptación de su tetraedro truncado.
Leonardo da Vinci: Dibujo de un poliedro de 72 caras para la Divina Proporción de Luca Pacioli
Leonardo da Vinci realizó varios dibujos de poliedros para La Divina Proporción de Luca Pacioli. Aquí podemos ver una adaptación del poliedro de 72 caras (Septuaginta) también conocido como esfera de Campanus de Novara.
Dodecaedro rómbico (3): cubo con pirámides
Añadiendo seis pirámides a un cubo podemos construir nuevos poliedros que tienen veinticuatro caras triángulares. Para unas determinadas pirámides obtenemos un dodecaedro rómbico que tiene doce caras rómbicas.
Dodecaedro rómbico (4): Dodecaedro rómbico formado por un cubo y seis sextos de cubo
Podemos construir un dodecaedro rómbico añadiendo seis pirámides a un cubo. Este hecho tiene interesantes consecuencias.
Desarrollos planos de cuerpos geométricos: Octaedro regular
El primer dibujo del desarrollo plano del octaedro regular fue publicado por Durero en su libro 'Underweysung der Messung' ('Los cuatro libros de la medida'), el año 1525.
Construcción de poliedros. Técnicas sencillas: Cara a cara con cartulina
Si recortamos las caras sueltas de los poliedros podemos unirlas con pegamento y construir poliedros. Puedes descargar varias plantillas con diferentes polígonos. Es una técnica muy sencilla para construir poliedros muy vistosos e interesantes.
Recursos: Construcción de poliedros con cartulina y gomas elásticas
Si recortamos las caras sueltas de los poliedros podemos unirlas con gomas elásticas o pegamento y construir poliedros más complicados y con varios colores.
El cubo, el octaedro, el tetraedro y otros poliedros: Taller de Talento Matemático de Zaragoza. Curso 2014-2015.
Material para la sesión sobre poliedros (Zaragoza el 7 de Noviembre de 2014). Estudiaremos el volumen del octaedro y del tetraedro y veremos que el octaedro truncado nos puede ayudar en esta tarea. Construimos una cubo de cartulina con un tetraedro de origami modular en su interior.
Poliedros duales: el cubo y el octaedro. Taller de Talento Matemático de Zaragoza. Curso 2015-2016.
Material para la sesión del TTM (Zaragoza el 23 de Octubre de 2015) . Estudiamos la dualidad de poliedros y, en particular, los poliedros platónicos duales. Construimos una cubo de cartulina con un octaedro de origami modular.
Construcción de poliedros. Técnicas sencillas: Taller de Talento Matemático de Zaragoza
Material para la sesión sobre construcción de poliedros que se realizó en Zaragoza el 13 de Abril de 2012. El objetivo es disfrutar haciendo poliedros y obtener alguna conclusión matemática a partir de esas construcciones.
Construcción de poliedros. Cuboctaedro y dodecaedro rómbico: Taller de Talento Matemático de Zaragoza. Curso 2013-2014.
Material para la sesión sobre construcción de poliedros (Zaragoza el 9 de Mayo de 2014). Empezaremos con el tetraedro, el cubo y el octaedro y presentaremos el cuboctaedro y el dodecaedro rómbico. Relacionaremos este poliedro con los panales de abeja. Construimos una cajita que es un dodecaedro rómbico.
Cuboctaedro estrellado
El poliedro compuesto por un cubo y un octaedro es un cuboctaedro estrellado. O lo que es lo mismo, el cuboctaedro es el sólido común al cubo y al octaedro en este poliedro.