matematicas visuales visual math

A cone can be cut by an oblique plane.

The main interest of this page is to see how a cone cut by an oblique plane can be developed into a plane.

Truncated cone: an example | matematicasVisuales
Truncated cone: developing into a plane | matematicasVisuales
Truncated cone: a plane development| matematicasVisuales

This in another example:

Truncated cone: another example of plane development | matematicasVisuales

MORE LINKS

Albert Durer and ellipses: cone sections.
Durer was the first who published in german a method to draw ellipses as cone sections.
Albert Durer and ellipses: Symmetry of ellipses.
Durer made a mistake when he explanined how to draw ellipses. We can prove, using only basic properties, that the ellipse has not an egg shape .
Ellipse and its foci
Every ellipse has two foci and if we add the distance between a point on the ellipse and these two foci we get a constant.
Equation of an ellipse
Transforming a circle we can get an ellipse (as Archimedes did to calculate its area). From the equation of a circle we can deduce the equation of an ellipse.
Archimedes and the area of an ellipse: an intuitive approach
In his book 'On Conoids and Spheroids', Archimedes calculated the area of an ellipse. We can see an intuitive approach to Archimedes' ideas.
Archimedes and the area of an ellipse: Demonstration
In his book 'On Conoids and Spheroids', Archimedes calculated the area of an ellipse. It si a good example of a rigorous proof using a double reductio ad absurdum.
Ellipsograph or Trammel of Archimedes
An Ellipsograph is a mechanical device used for drawing ellipses.
Ellipsograph or Trammel of Archimedes (2)
If a straight-line segment is moved in such a way that its extremities travel on two mutually perpendicular straight lines then the midpoint traces out a circle; every other point of the line traces out an ellipse.
Plane developments of geometric bodies (4): Cylinders cut by an oblique plane
We study different cylinders cut by an oblique plane. The section that we get is an ellipse.
Plane developments of geometric bodies (5): Pyramid and pyramidal frustrum
Plane net of pyramids and pyramidal frustrum. How to calculate the lateral surface area.
Plane developments of geometric bodies (3): Cylinders
We study different cylinders and we can see how they develop into a plane. Then we explain how to calculate the lateral surface area.
Plane developments of geometric bodies (2): Prisms cut by an oblique plane
Plane nets of prisms with a regular base with different side number cut by an oblique plane.
Plane developments of geometric bodies (1): Nets of prisms
We study different prisms and we can see how they develop into a plane net. Then we explain how to calculate the lateral surface area.